. Sabancı . Universitesı

Mechatronics Engineering

A robot is a machine -especially one programmable by a computercapable of carrying out a complex series of actions automatically (Oxford Dictionary).

A **robot** is a machine -especially one programmable by a computercapable of carrying out a complex series of actions automatically (Oxford Dictionary).

The term, "mechatronics", is coined in 1971 prior to progress in robotics. The gap between "robotics" and "mechatronics" has been reduced ever since.

A **robot** is a machine -especially one programmable by a computercapable of carrying out a complex series of actions automatically (Oxford Dictionary).

The term, "mechatronics", is coined in 1971 prior to progress in robotics. The gap between "robotics" and "mechatronics" has been reduced ever since.

Requires the integration of systems from various disciplines:

- Mechanical systems
- Electrical systems
- Electronics
- Software & Automation
- Communication
- Product engineering & design

https://www.wevolver.com/article/design-considerations-forhumanoid-robots

Mechanical Design

•

https://www.wevolver.com/article/design-considerations-forhumanoid-robots

Mechanical Design

Electronics

https://www.wevolver.com/article/design-considerations-forhumanoid-robots

Mechanical Design

Electronics

.

https://www.wevolver.com/article/design-considerations-forhumanoid-robots

Mechanical Design

Electronics

Control Systems

Electronics Engineering:

Circuit Design

EROGRAPHY

Electronic

Systems

DEFENSES

- **Embedded Electronics**
- **Power Electronics**

Interdisciplinary Nature of Mechatronic Systems

Boeing 737 MAX-8 Boeing 737-800 NG

Interdisciplinary Nature of Mechatronic Systems

EV MODELS (NEW!) EV NEWŚ 🗸

EV SALES

Why Tesla's move to 48-volt electrical architecture is an industry game changer

MARCH 20, 2023 - 107 COMMENTS - 4 MINUTE READ - TIM JAMES

Cybertruck FURTHER IMPROVING LOW VOLTAGE ARCHITECTURE

ROAD TRIPS REVIEWS

MULTIMEDIA V

107 COMMENTS

TESLA 48-VOLT CYBERTRUCK

Interdisciplinary Nature of Mechatronic Systems

EV MODELS (NEW!) EV NEWŚ 🗸

EV SALES

Why Tesla's move to 48-volt electrical architecture is an industry game changer

MARCH 20, 2023 - 107 COMMENTS - 4 MINUTE READ - TIM JAMES

Cybertruck FURTHER IMPROVING LOW VOLTAGE ARCHITECTURE

ROAD TRIPS

REVIEWS

MULTIMEDIA V

107 COMMENTS

.........

TESLA 48-VOLT CYBERTRUCK

Mars rover Curiosity (NASA JPL)

EROGRAPHY

Rehabilitation Robotics (SU)

System Modelling Control System Design

Power Electronics Circuit Design

Required Courses

Robotics, Automation, and Artificial Intelligence

- System Dynamics and Controls
- Industry 4.0
 - Computational Design
 - Micro and Nano Systems
 - Manufacturing
 - Embedded Systems

System Modelling Control System Design

Required Courses

Required Courses:

IF100 **CS201** MATH201 Linear Algebra **MATH202** Differential Equations

ENS 203 Electronic Circuits I **ENS204 ENS206 ENS214**

Mechanics **Dynamics**

ME301 ME303 ME305

ENS491/2 Graduation Project

- Computational Approaches to Problem Solving Introduction to Computer Science
- Systems Modeling & Control
- **Mechanical Systems I** Control System Design **Power Electronics**

Recommended courses for Robotics, Automation, and Artificial Intelligence

Recommended courses for **Energy**

Recommended courses for Systems, Dynamics and Control

Recommended courses for Computational Design

Embedded Systems

- CS 204 Advanced Programming
- CS 303 Logic and Digital System Design
- EE 308 Microcomputer Based System Design
- CS 401 Computer Architectures
- ME 407 Embedded Systems

Industry 4.0

- CS 204 Advanced Programming
- EE 308 Microcomputer Based System Design
- CS 401 Computer Architectures
- ME 305 Power Electronics
- ME 308 Industrial Control
- CS 404 Artificial Intelligence
- CS 408 Computer Networks
- ME 403 Introduction to Robotics
- ME 425 Autonomous Mobile Robotics

Micro and Nano Systems

- EE 404 Introduction to Microelectromechanical Systems MAT 406 Nanoengineered Systems Fabrication
- ME 402 Plasmonics
- ME 409 Foundations of Microsystems
- ME 435 Scaling in Engineering Systems
- ME 437 Biomechatronics

Manufacturing

- ENS 209 Intro. Computer Aided Draft. Solid Modeling IE 309 Manufacturing Processes I • IE 402 Integrated Manufacturing Systems • IE 416 Additive Manufacturing

Part III – After Graduation?

Academia

- MS & PhD opportunities in leading universities or research institutions in North America, Europe, and Asia
- Researchers and faculty members in several national and international institutions

Research Areas at SU

- Robotics & Control
- Real-time Imaging and Vision Systems
- Automotive Systems
- Mechatronic System Design
- Dynamics & Vibration
- Energy Systems
- Micro & Nano Systems
- Design & Optimization
- Biomechatronics

■ F ■ F ■ /

Industry:

Automotive (Ford Otosan, Mercedes, AVL, Bosch) Defence (Aselsan, Roketsan, TAI, TEI, Vestel) Robotics (Altınay, ABB, Staubli) Home Appliances (Arçelik, Vestel, B/S/H) Automation (Festo, Siemens, Altınay Robotics)

Faculty Members

Ali Koşar	ME, RPI, USA
Bekir Bediz	ME, CMU, USA
Güllü Kızıltaş	ME, University of Michigan, USA
Kemalettin Erbatur	EE, Boğaziçi, TR
Kürşat Şendur	ECE, Ohio State University, USA
Mahmut Akşit	ME, RPI, USA
Melih Türkseven	ME, GeorgiaTech, USA
Meltem Elitaş	Bioengineering, EPFL, Switzerland
Mustafa Ünel	EECS, Brown, USA
Serhat Yeşilyurt	Nuclear Eng, MIT, USA
Tuğçe Yüksel	ME, CMU, USA
Volkan Patoğlu	ME, University of Michigan, USA

For further inquiry, please visit:

https://me.sabanciuniv.edu/

MECHATRONICS ENGINEERING

MECHATRONICS ENGINEERING

